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INTRODUCTION

In this report we summarize the results of experiments in which Lg waveform.s ar •.v..
,ither by dynamic raytracing and or superposition of Gaussian beams (CervenrV. 9..
dimensionally varying crustal wavwgtui(h(s. In both approa'bhes. I..g is reir(,setitd a ,
imultiply critically relhectd( SrnS waves (,igur, 1). Topography of Ihe %loho is '(.,rr,•t.•6 v.it ,
(or known surface topography under the assumption of Airy i:jost asv. The star• l•g
are essentially the same as those usedI by Kennett (1986) in idntifying gr<>zs e,,Vcts ()I c
thickness on Lg by plotting the bounce points of critically reflected S waves in the cr<i,. 1-:,.
however, waveforms are calculated and the effects of geometric spreadxring: are included. l)e ,
modleling approach, including source functions assumne(l, are d(scrilel in (('orrnier a;111( •.

RESULTS

Propagation Perpendicular to a Mountain Range

Ig is modeled by summing dynamically traced rays in a laterally varying crustal wavegoid!(, -
lating a hypothetical mountain range. Crustal thickness contours are shown in map view in i

Ia. Certain characteristics, such as the square corners of the contour lines, are concession'- rM,!!"
for modeling simplicity and are not expected to greatly influence the results. Backgroundl ( :t-i;i
1hickness is taken as 35 kin, which represents continental crust slightly elevate(d ahov(. :,.a 4,.,( 1.

The thickness of the mountain root is 50 krn, which is consistent with gravity surveys in xar,

high mountainous regions (e.g. Press and Siever, 1982, p. 4.37). A physical analogy to 1hin 1twhi

may be found in the South American Andes. which is similarly a narrow range with abri"p! h,,:

on both sides.
Tested propagation paths are shown in Figure la and ray synthetic seismograms in P"ig).r, jl¾

for a vertical point force. The first trace shows Lg at the same offset as receiver lB thro,,,
undisturbed waveguide. Traces 2 through 4 are recordings from receiver locations 1 , t01,01h 1,11<
Visual comparison of the traces gives a measure of attenuation and the extensive humneri(a• ,(a;
from the program runs explain the primary cause (mantle transmission and/or defocusing), - Ihe
seismogram from location R, shows that early Lg arrivals have high amplitude but later arriv'als ar.
considerably weaker. The effects of crustal thinning are not evident at this locatiion and the weoakeor

signal is explained entirely by propagation across the transition to thicker crust. The In(,! of
attenuation is defocusing. The slower ray paths reaching location It, are reflected in areas of .lho
curvature and as a result, average geometric spreading is increased by a factor of 2. Sintce, Nloht)
curvature is found to cause attenuation in this and other program runs, it is useful to consider
an alternative transition model; a planar dipping Moho. The planar surface will not caii>,. Oh
increase in geometric spreading noted above, but will result in attenuation through other iecans.
Specifically, much of the defocused energy that reaches the receiver through curved transi io,>; i.
reflected by planar transitions in directions that do not reach the receiver. This is easily vi>•.,iited
1)y considering rays tubes and the area between rays, which is the wavefront. Defocusing 1, a-,

larger wavefronts which have a better chance of reaching the receiver than do the smaller wave.i ,t
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reflected by planar surfaces. The present study has compared the methods and found col)a:•aiblh,

levels of attenuation, although the seismograms are somewhat different. in appearanne,
A very slight increase in attenuation is evident at receiver location 112. primarily lwca~ls(, ,:

rays reaching this point arc defocused to some extent. Attenuation at location 113 is (qulith a 1)1'

stronger than at R1 and R 2 . Here the propagation path crosses the transition to thin•., i c
which diverts much of the energy that would otherwise reach the receiver. Diversion occus• it
three ways. First, rays travelling at post-critical angles relative to the horizontal Moho becnc
pre-critical at the upward dipping transition, and energy is lost to mantwl transmission. Seco(Iil \.
a large portion of the remaining reflected energy travels at pre-critical angles, leading to mall 1h
transmission beyond the transition. The third method of diversion is back-reflected rays.

Propagation Parallel to a Mountain Range

Figure 2 illustrates the results of tests of Lg propagation parallel to the strike of a vininil,
range for a vertical point force. Sources and receivers are assumed to lie within a moun aliii
having a deep crustal root. Seismogram trace 1 shown again for reference propagation in cruo
having planar free surface and Moho. Traces 2-4 corresnond to receiver locations R1, 112 and IN,
Transition zones trending parallel to the propagation path form a secondary waveguifde and !}l,
modeling predicts that rays will be trapped within. These raypaths are weak, however, as Moi,)
curvature causes significant attenuation by geometric spreading. The seismogram at location H( .
which is not subject to transitions perpendicular to propagation, shows energy roughly equal to
undisturbed Ig. Although a large number of raypaths with lateral reflections were trac('e(. Oh
increased geometric spreading leads to weak arrivals. The traces at locations R2 anr(l R1 are sn,
to be strongly attenuated by the crustal thinning transition.

Rays trapped by the lateral waveguide undergo conversion between SV and SIi. but conv,.rsihe1
of this type are not noticeable in the synthetic seismograms. It is possible that, because these ray,
tend to be weak, the conversions are not noticeable. Another possibility is that Si1 to SV c(nvr.i(,;h
is generally canceled by SV to S11 conversion under the particular conditions of this mo(ldel. lit l,.
real crust, the primary method of SV to SH conversion is scattering by small scale heterogemici,,>.
, Ihich can not be considered under the constraints of ray theory.

Propagation Oblique to a Mountain Range

Figure 3 illustrates the attenuation of Lg for paths oblique to the strike of a mountain raMg(e t,))
a vertical point force. Sources and receivers are located such that propagation paths are at. Nt),
70. 45 and 20 degrees relative to the waveguide perturbations. Receiver distance is 2(0() km iin
all cases. Strong attenuation is evident over each propagation path, but the individual wavw,frmni
vary considerably. For paths terminating at receivers RI and R2, rays encounter steel) I lhickt•,ý-

transitions and many rays are entirely transmitted to the mantle. Along the more oblique ,•l I,
los,!ding to R 3 and R 4 , the Moho (lips less steeply and as a result, the number of two-point ray pat lis
increases. It appears that Lg propagates slightly more efficiently at 45 degrees than at th, ot h,,*
angles tested, but the difference is insignificant compared to the level of attenuation.
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Width of Crustal Transition

In crustal models shown in figure ia, 4a and 4b, the width of the tran.sition region betwev.,.'- Thick
and thin crust is varied. The sonrce-receiver paths are 2000 km in length and !,rpei!ý( :1.i <,!

whe strike of the transiton regions. Synthetic traces 2 and :1 in I'ignre 1c. which conipan. 21)
km width of thick•-ned crust with a 500 km width, both show weak Lg. The similarityl ,,
traces suggests that the width of a mountainous region has very Ii, Je effect on ovwrall att (lat ,il.
"FTace 4 shows Lg after propagation through transition regions 200t kin wide (compar(eli ,) !I i,,ni
wide in trace 2) and the difference is readily apparent. The widhi(xt transition width ret..,1r i1 IA.,

amplitude analogous to that in the undisturbed waveguide, which implies that the width of r ru-•t aI
transition regions and the corresponding change in overall Moho dip anrlle impose the priiary
control over Lg attenuation.

Propagation Across the Tibet Plateau

The map shown in Figure 5a gives source and receiver locations used in the l.g analvs <,k o0- lzikink
et al. (1977). Shading corresponds to regions of high mountains. Central Asia w&a et,: c o

test the methods of the present study because Lg is known to be highly attenuated here ani lOo(1
specific examples are given in published seismograms. A study of focal mechanisms in t hle Ti ltllan
Plateau (Molnar and Chen, 1983) found these earthquakes to occur at depths of 5 to 10 kii ",vith
combined strike-slip and normal faulting and T axis primarily east-west. No earthquakes wxer,,
located below 10 to 15 km, suggesting the crust is essentially aseisinic below these dent h-. 'lI)
fault solutions indicate the Tibetan Plateau is undergoing east-west extension, much like fit. l•ir,

and Range province of the Western United States.
Crustal thickness has been hand digitizNd and the results, in the form of a Moho d(.p'h plot.

are shown in Figure 5b. Samples are taken at a .5 degree (50 km) sampling of latitudeý and
longitude. (Topography and Moho depth at 10 km sampling are now available in unclass'ified
databases established by Fielding et al., 1992.) The method of determining crustal thicknw.ss is a
combination of published survey results and inference. Choudary, 1975 estimates crustal thicknes.
of 70-72 km in the Central Himalayas from Bouger gravity anomalies. Bird and Toksoz, 1975 study
the velocity of 20-80 second Rayleigh wa-'es and conclude that the crust is 75 km thick within
the Tibetan Plateau. Published data on crustal thickness within the Tarim Basin and Tien ShanT

Mountains were not found, so thickness has been estimated from average elevation. El(vation
varies from 500 to 1000 meters within the Tarim Basin and crustal thickness is est, imated .a I3K
km. Average Tien Shan elevation is on the order of 3000 meters, leading to a thickness estimate
of 50 km. Estimation of crustal thickness combined with the large digital sampling intervafls load
to a very rough motlel of the crust, but the transitions, which seem to most strongly (45f-'o; lg
prop)agation, are represented as closely as the model will allow.

Figure 5a shows propagation paths from the two earthquakes chosen for modeling by Ihe 1rv
method. D)ouble couple radiation patterns have been inclu(dedl, [oth paths are subject t( (ilrutal
thinning at the Tarim Basin then crustal thickening at the Tien Shan mountains before the waves
are recorded at Soviet station Talgar ('TIG) Since the paths are similar, transition steepne.,s will
be approximately the same. The main difference between paths is that the the more westerly pal 11
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from the earthquake near 87'E longitude travels about half as far within the 'l'ibetan l'lanea, ;
the path from the earthquake near 930 longitude. Figures 6a,b compare the observ•e and sN'nt 11( i,

seismogram for the earthquake (rnb=5.1) having the more westerly path. Lg appears to be' st Ioniw:•k

transmitted, having a high amplitude relative to Pn. The synthetic agrees well with details of i 1;,ý
observed Lg coda. Figures 7a,b compare seismograms recorded from earthquake (mb- 6.1) havirng
the more the easterly path. Lg appears to be very weak in these recordings, having a low arrilmpitit
relative to Pn. The synthetic seismogram has high amplitude pulses not seen in the obscr%-v,&!
seismogram.

Certain additions to the crustal model could significantly improve the match between the syvn-
thetics and the recordings. F irst, inclusion of the low Q believed to exist in the deep crusl (it
the Tibetan Plateau (Bird and Toksoz, 1975) would improve the agreement between observed rIId
predicted Lg transmission Each ray incident at the Moho beneath the Tibetan Plateau wonli
be subject to high intrinsic attenuation, establishing a direct relationship between travel dis.lta,
within the plateau and attenuation suggested by the observations. Scattering attenuation b'v I he
3-D heterogeneities associated with the uplifted region would tend to reinforce this relationship.
Details of the shallow structure of the Tarim Basin have been omitted from the crustal model.
The weak path , for which poor agreement exists between observed and predicted Lg transmissiri.
crosses the Tarim Basin. Baumgardt (1991) found that sedimentary basin structure is at h.e-•
as important, if not more important, than Moho topography in controlling Lg propagation. J.o-
seismic velocity within the sediments can form a waveguide trapping a significant portion of II,
rays that would otherwise contribute to Lg, the slopes of the basin on exiting side rays acting to
defocus subsequent SmS rays (Figure 8). Rays reverberating within the sedimentary basin ";o1111
also suffer high levels of scattering attenuation within the sediments. A third possibility for the dis-
crepency between the observed and predicted Lg waveforms in the weak path example is snpggsl,,d
by comparing the topographically inferred Moho with that determined by the Soviet Deep Swiror
Sounding Project (DSS). In the region of the Tibet Plateau, the transition zone between tiormoWl
and thickened crust is quite different in form in 1)SS sections than that which would be predicted
by simple isostasy (Fielding, personal communication). One or more of these modifications (of Iit
crustal model may lead to synthetics that more closely match the attenuation levels s•,i, in tI,
re(orded seismograms.

Scattering Within the Crustal Waveguide

Thc modeling described in the previous subsections does a remarkably good job in pred(ict j
the blocking of Lg by major crustal transitions and is often .ýuccessful in accounting for the mot-t
significant details of the Lg coda. It is clear, however, that observed Lg codas will be always contain
greater complexity than synthetic codas generated in models having a homogeneous crust. We have
conducted several experiments to include the effects of fine scale three-dimensional ieterog,,wie ii,,
within a crustal waveguide of variable thickness. To achieve this goal, we added dynamicall'y tr;, i(
rays to point scatterers within a crustal waveguide of variable thickness (Figure 9). A slanld;in
Born approximation (e.g., Wu and Aki, 1985) is used to calculate the radiation pattern of the point
scatterer.s. The results shown in Figure 9 were calculat(e for a single point heterogerneiy haviuc.
positive 5 per cent contrasts in P velocity, S velocity, and density from the background indhull.
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It. is clear that the existence of even a single point heterogeneity quickly acts to fill up tA&
between multiply reflected S waves.

The standard Born approximation used in this demonstration does nrot conserve energy , win, ,
a poor job in recreating scattered codas predicted by finite differcince solutions of the (elast ic
of motion in heterogeneous media (Coates and Charrette, 1992). Improved agreement with
difference simulations can be obtained by using the generalized liorri approximation (Cu•o;v'#- irl
Chapman, 1991). The generalized Born approximation, in which scattering occturs h\w ,,
of frequency dependent reflection by regions of high gradient. is applicable to tt)(1dCls ill 'd iih

velocities and density are parameterized by contintious functions of space. Such a param.le (,i(i- w',,or1

also greatly simplifies the description of the rays contributing regional seismograms.

Importance of Scattering in Different Depth Regions of the Crust

Lg rays have been dynamically traced in models of the crust in which the Moho has bee(,n r,pn>,',
by a high gradient transition (Figure 10). The SInS rays contributing to the Lg co(la are lur+ x+
rays in the high gradient region. Geometric spreading factors have been tracked along ea(h ray
demonstrating that, the spreading factors of individual rays vanish at. the turning points Wit ii.
the Moho transition. It is well known that such a high gradient. zone will form a canstic st,-t•v f'

within the high gradient zone, to which multiple turning rays will be tangent. A revers-f! tr,•.eI
time branch and triplication will also be observed for rays traced at a sequence of increasing ,,,-
off angles. Scattering of Lg rays near the caustic surface, where amplitudes will be high dh'e to
the vanishing of the geometric spreading factor, will be greatly enhanced. This situati)n is very
analogous to the enhanced amplitude of scattered PKIKP precursors due to heterogeneity at the
core mantle boundary (e.g., Bataille and Flatte, 1988). For PKIKP precursors, the prefornce of

a caustic surface in the outer core is stifficient to make even a very slight heterogeneity nc,hO
core-mantle boundary account for the observed amplitudes of the scattered waves. Likewi,.. ý
caustic surface within a Moho transition zonte will capable of aril)lilfying the ef(l'ecs oif vet,- ,-vill
heterogeneity within the Moho transition.

In predicting regions in which enhanced scattering may occuri it is also useful to conside•r 111c
intersections of SInS rays traced from the receiver with SInS rays that originate at the siwm e. Ii
two-dimensional scattering, the existence of a heterogeneity at such crossing points will i;n.k• it

possible for SmS to SInS scattering to occur, filling up the coda between the individual Stui aýr-ivals

making up the Lg coda. The greatest density of such crossing points occurs near the Moho transition
and near the free surface. An important source of the late Lg coda will be three-dirnensuil ,ii S
to SmS scattering occurring out of the vertical plane containing O le sou•rce and receiver.

CONCLUSIONS AND RECOMMENDATIONS

Modeling Results

(1) Moho Topography and Sedimentary Basins are the two most. important elements . lrti''Ž
responsible for Lg blockage.
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(2) Slopes of major crustal discontinruities and transitions (Moho and 1)Lsini-.5 diIIlent i IjI.It -LI !,
the principal features corntrolling the propagation el[iciency of lg.

(3) There is only a weak (depend(ence on the azirnut h of Ohe propagation path with respl.(t loI (if

strike of blocking features.

(4) Distributed heterogeneities and small scale topography of crustal discort innities in he 1 rin-
can act to fill up and lengthen the Lg coda. lh tcrogoeneities withi n wh, primarily alit,' I L.
source-receiver azimuth fill up the early coda 1,.tween individual S wavces IrappedI in 1h4 ,tl!
waveguide. Off azimuth heterogeneities within the crust are a significant component, of the la•e I-,,
coda following the last arriving Moho reflected S wave.

Lessons from Ray Based Approaches to Regional Seismogram Synthesis

(1) Utility of a Continuous Model Parameterization: The complexity of ray code (lescriptioun) iT;

models described by first or(der discontinuities argues for models paratneterized by fnetioin., (on,
tinuous in space.

(2) Treatment of Reflections and Conversions in Regions of Strong Gradient: A generalizd lLrr

approximation can be used to calculate the frequency dependent scattring by regions having st rom,
gradient, including the Moho transition zone resulting from the parameterization described ablv,.

(3) The Most Important Regions of Scattering for the Lg Phase and Wily:

(a) Moho transition because ta caustic surface is in('lul•el in this region for many of I he S wxv,Ž3
co'mpiosing the Lg phase. In addition there .s a high density of S ray im •icti(hons inI 1i, ris ,,0 l

permitting scattering from one type of multiply refle(cted S wave composing the lJg phase to a••oi hwi(
type.

(b) The free surface region because there is - high density of S ray intersections in t Iii:., igion
permitting scattering from a source ray consisting of multiple Moho reflect•l S waves to a recive.
ray consisting of multiply reflected S waves. In addition, this region should be important bau.et1 orI

array data suggesting a higher magnitude of velocity and density fluctuations in the upper 2 kin ,1l
the (clust..
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r. R3
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50 km - . R1

0 500 km

Figure I (a) Above: propagauon paths normal to strike of mountain range. 'rhis map view shows
the crustal thickness contours of a narrow hypothetical mountain belt, along with the Lg propaga-
tion path and receiver locations. R, through R3 offsets are 2200, 2300, and 2400 km respectively, an
unperturbed waveguide. (b) Below: ray synthetic seismograms for paths to receivers Rt through
113. Trace I is Lg modeled at the R, offset in an unperturbed waveguide. Transverse ground
motion is not shown because SV to SH conversinn does not occur when the propagation path is
perpendicular to waveide variations.
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Trace I = Non-attenuated Lg
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Trace 3 = Receiver R,
Trace 4 = Receiver R,
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35 km
50 km

J]R3

R1 R2

0 500 km

Figure 2 (a) Above: propagation paths parallel to the strike of the mountain range. Offsets
are 2200, 2300, and 2400 km. to receivers within the mountain range. (b) Below: ray synthetic
seismograms. An increased number of ray paths reach receiver R, relative to receivers R 2 and R 3
resulting from lateral reflections within the mountain belt. Coda duration is sharply limited at the
R2 and R3 . Very weak motion can be seen on the transverse traces.
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35 km
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~iI l I

0 500 km

[-:igure 3 Lg propagation at paths making oblique angles to the strike of the mountain range.
Above: (a) path to R, is at 90", path to Rt2 is at 70P, path to R11 is at 450, and path to it4 is at
200. lReceiver offset is 2000 km over all paths. Below: (b) ray synthetic seismograms. Although
waveforms 2-5 vary considerably, all have been considerably attenuated relative to the reference
trace in an unperturbed waveguide and total energy is roughly the same for each of these paths.
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Trace I = Non-attenuated Lg
Trace 2 = Receiver R, (90 degrees)
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Trace 5 Receiver R4 (20 degrees)



35 km
50 km

0 500 km

35 km

50 km

Figure 4 Effect of the width of crustal thickening and thinning. The crust increases and decreases in

thickness over transition regions 100 km (above) and 200 km (middle). Ray synthetic Lg wavetrains
are shown below for an offset of 2000 km and propagation perpendicular to the strike of the mountain
range. Weak Lg in traces 2 and 3 compared to strong Lg in trace 4 indicates that the width of the

transition region affects Lg efficiency more than the overall width of the mountain root.

1 0- " 4 -A 4 %

4 1- _O .. _-

I Minute

Trace I Non-attenuated Lz
Trace 2 Receiver RI Crust Model Ia
Trace 3 = Receiver R2 Crust Model 4a
Trace 4 = Receiver R3 , Crust Model 4b
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45 ' < .....
T T an Sh~an

L. ~ -. Tariim Basin -'

T JibetZ an .I-
L PlateauIM

30 H ima layas

25 _ _ _ _ _75 88 85 go 95 180
Degrees East

Fiur. Above: (a) map of Central Asia showing the propagation paths of two earthquakes
modeled by ray methods. Shading highlights high mountainous regions of thickened crust. The
left path gives a detectable Lg signal and is referred to as the strong path. Lg from the right
earthquake is very weak. Below: (b) Central Asian Moho depth plot obtained by digitization of
crustal thickness values. Not to scale.



SSn Lg1 Lg2Pn
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Figure 6 Above: (a) Central Asia strong path seismograms. The seismograms recorded from the

left earthquake of figure 5a show clear Lg energy in both the top trace (instrument response peaked
between 0.5 to I Hz.) and bottom trace (instrnment response peaked between 0.2 to 0.5 H1z.).
Middle: (b) scaled strong path synthetic. The synthetic seismogram is scaled to the dimensions of
the actual seismogram and shows good recreation of Lg. Below (c): detailed strong path synthetic.
These synthetic seismograms are not scaled to the recordings and allow deterrmnation of the level
of attenuation. Ray modeling through a homogeneous crust predicts si,-nificant attenuation over
this path.
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Figure 7 Above: (a) Central Asia weak path seismograms. The seismograms recorded from the
right earthquake of figure 5a show very weak Lg, as can be seen by comparing Lg ampitude to
Pn. Middle: (b) scaled weak path synthetic. The synthetic seismogram of the weak path predicts
energetic pulses that are not present in the actual recordings. Below: (c) detailed weak path
synthetic. Lg is clearly atcenuated over this path but, as seen in figure 9b, the predicted level of
attenuation is insufficient to explain the observations.
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Figure 8. Top: Iso-S velocity contours defining a deep sedimentary
basin (Z and Xco-ordinates are in kilometers.) Bottom: ray
trace of S waves trapped in the crustal waveguide (Lg). Notethat the effect of the basin will be to attenuate Lg at stations
1400 km and greater range.
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Figure 9. Effect of scattering within a crustal waveguide of variable thickness. Left
column: no scattering within the crustal waveguide. Right column: scattering by a single
scatterer within the crustal waveguide. (In the synthetics shown in the right column, all of
the ray paths shown at top left are included plus the scattering paths shown at top right.)
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Figure 10. Intersections of rays traced from the receiver with rays traced from the source
are densest near the surface and near the SInS turning points. Scatterers at these locations
will contribute to the complexity of Lg coda. Scattering near the Moho transition will be
particularly important because the presensce of a caustic in this region will greatly amplify
the effects of small perturbations in elastic moduli and density.
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